
Geometric spectral inversion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 1771

(http://iopscience.iop.org/0305-4470/28/6/028)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 02:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A, Math. Gen. 28 (1995) 1771-1786. Printed in the UK 

Geometric spectral inversion 

R L Hall 
Depanment of Mathematics and Stalistics, Concordia University, 1455 de Maisomewe 
Boulevard West, Montreal. Quebec. Canada H3G 1M8 

Received 14 July 1994, in final form 19 December 1994 

Abstract We suppose that the bajeclory function F(v) .  which describes how the lowest 
eigenvalue of the Schredinger H m i l t o n h  operator H = - A +  of ( x )  depends on the coupling 
parameter U, is known, and fmm this we reconstruct the s h p e  f ( x )  of the potential. If f is 
symmelric and non-decreasing for x > 0, then f (0) can he determined riom F; in Ihe case of 
bounded potentials with area, the area can also be determined. If F is a possible lrajectory. 
then the inverse A- ' (F)  = f is proved to be unique. Square wells and separable potentials are 
immediately invertible. and square wells f u  are also e x b e d :  they bound lhe range of A by 
the general inequality Fo c F. Wtlh the help of the kinetic-potential formalism. approximate 
inversion formula are derived by a variational method and also by envelope representations. 

1. Introduction 

Geometrical considerations of the type we shall consider in this paper become a quantum- 
mechanical spectral problem when the Hamiltonian operator H, which generates the 
spectrum, depends smoothly on certain parameters. Spectral objects such as eigenvalues 
depend in turn on these parameters and in so doing they generate curves or surfaces in a 
Euclidean space. In this paper we investigate the following elementary question: if we know 
how the lowest eigenvalue of a Schrodinger operator depends on the coupling parameter. is 
this sufficient to reconstruct the shape of the potential? In an earlier paper [ I ]  we showed 
that the specific question whether or not a symmetric potential had a flat (horizontal) patch 
at its centre could be answered unambiguously by studying the dependence F ( u )  of the 
lowest eigenvalue on the coupling parameter; moreover, by studying F ( u )  a lower bound 
could be established on the size of this patch. In this paper we cany this analysis further. 

We consider Schriidinger Hamiltonian operators of the form H = -A + uf(x), where 
f ( x )  is the shape of a non-constant symmetric potential in R which is bounded below and 
is non-decreasing on [O,oo) .  By a simple variational argument we can show that for all 
U > 0 the Hamiltonian H has a discrete eigenvalue F ( u )  at the bottom of its spectrum; we 
shall refer to F ,  or its graph (U. F(u))u > 0, as the energy frajectov of f ( x ) .  We therefore 
have 

(1.1) - @s*,(x. U) + u f ( x ) @ ( x ,  0) = F ( u ) @ ( x ,  U) > 0. 

Familiar examples are the sech-squared potential 121 

- sech2(x) = f ( x )  + F ( u )  = -[(U + ;) ' I* - (1.2) 

and the harmonic oscillator 
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1112 R L Hull 

The purpose of this paper is to study ‘geometric spectral inversion’, that is to say the inverse 
transformation: F + f. 

When it is more fully developed, it is expected that geometric spectral inversion will 
enjoy practical scientific application. The problem of screened-Coulomb potentials in  atomic 
physics is one possibility. In the context of a one-particle model such a potential is 
experienced by an outer electron or, say, a ‘visiting’ pion. Here atomic spectral data 
would be available corresponding to a set of values of the coupling parameter of the 
model. Similarly, with other N-body problems, one might have ground-state spectral data 
for various values of N,  In nuclear physics, for example, the masses of a sequence of nuclei 
immediately give the corresponding binding energies. If the particles are identical, or can be 
considered approximately identical within an isotopic-spin model, then quantum-mechanical 
non-individuality induces [3], via permutation symmetry, a relation between the N-body 
problem and a scaled two-body problem having an overall factor of N - 1 and a coupling 
parameter enhanced by the factor NjZ. Within such an approximation the nuclear masses 
determine the ground-state energies of a one-particle problem for a sequence of values of 
the coupling parameter. Such sparse spectral information might seem rather far from having 
the whole of the trajectory F :  but given the known concavity property of trajectories, even 
a few isolated values of F ( u )  would enable the reconstruction of a smooth approximation 
for F ( u )  from which, by geometric spectral inversion, an approximation could be obtained 
in turn for the underlying pair-potential shape f. 

For the last 40 years there has been intense interest in inverse problems related to 
quantum mechanics. Many fundamental results concerning inverse scattering theory and 
the relation behveen Schradinger operators and nonlinear waves are now available in 
monographs [&SI. The so-called ‘inverse problem in the coupling constant’ (for example 
Chadan and Sabatier 14, p 4061) must be distinguished from the problem introduced in this 
paper. In the former problem, expressed partly here in OUT notation, one has in addition 
to the normalization constants for scattering states, spectral data in the form of the set 
(u t )  of values of U such that F(‘)(IJ!) = E has a fixed value, where F“’ is the trajectory 
function for the ith eigenvalue of H. That is to say, for fixed energy one has a set of 
characteristic values of the coupling parameter U. In our problem we have, corresponding 
to an unknown potential shape f, a function F which describes how the lowest eigenvalue 
of H = -A + u f ( x )  depends on the coupling parameter U. The ‘transform’, which we 
earlier [9] called A, satisfies F = A(f): in this paper we tum our attention principally to 
the inverse A-’.  

Since the spectrum of X is invariant under translation along the x-axis, we shall regard 
the ‘horizontal’ shifts o f f  to be equivalent. We shall prove in section 2 that F determines 
the minimum of f ,  It is natural therefore to shift f so that, without loss of generality, 
its minimum occurs at x = 0. Vertical shifts of f, by b say, simply change F ( u )  to 
F ( u )  + bu. Consequently, we are able to show, without loss of generality, that the frame 
for f can be fixed by the imposition of conditions such as f(0) = -1, or alternatively 
for potentials not bounded above, f(0) = 0. In fact we shall derive a prescription for the 
‘normalization’ of a given trajectory F so that it would correspond to a potentia1 shape f 
obeying such a condition. For potential shapes f which have area 2A = l->.lf(x)l dx we 
shall show that the trajectory F determines A; for such potentials it is convenient to tighten 
the normalization so that A = 1. 

Square wells occupy a potentially important place in this study. If it is known that f 
is square, then up to the trivial shifts discussed above and under standard normalization, 
F determines f uniquely for f(0) = -1 and A = 1 and therefore f is determined. In 
addition to the square wells being immediately invertible, they have another interesting 
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feature: amongst the bounded symmetric semi-monotone potentials, the square wells are 
extremal; they have the lowest of all possible trajectories F .  Consider, for example, the 
‘suspect’ trajectory F * ( u )  = -u2/(l + U). If F a  were a trajectory for some potential shape 
f”. we can prove that f* would have to satisfy A = 1 and f”(0) = -1. However, no 
inverse exists for F* because it lies beneath the normalized square-well trajectory Fn. In 
order to prove results like this we use a refinement [IO] of the usual comparison theorem 
of quantum mechanics which is discussed in section 3. 

In section 4 we briefly recall some results from kinetic-potential theory and use these 
to generate approximate inversion formulae by a variational method and also by the use of 
envelope representations in the form given in [ll]. In section 5 we derive inversion results 
for separable potentials. Finally, in section 6 we discuss the general question of uniqueness: 
we are able to prove for symmetric potentials which are monotone for x =- 0 that if the 
trajectory F exists then the inverse f is unique. 

2. The normalization of trajectories 

The main results of this section presuppose that the unknown potential shape f is symmetric, 
semi-monotone, and bounded below. Then, from the given trajectory function F ,  we can 
determine whether the unknown potential shape f is bounded above and also whether it 
has area: in these cases the bounds and the area can be determined from F. Once these 
parameters are found, the potential and the trajectory function can be conveniently scaled 
to a standard normal form. 

More specifically, we suppose that the potential f is bounded below and that it is 
symmetric about its minimum point i .  Since the Laplacian is invariant under spatial 
translations it follows that we can replace x by x -i everywhere in (1.1); that is to say, the 
spectrum of H, and in particular F ( u ) ,  is invariant under spatial translations. Consequently, 
without loss of generality, we henceforth assume that i = 0. If in (1.1) we suppose that 
11@11 = 1, then after an integration by parts we obtain the inequality 

By using (2.1) and a variational upper bound it is possible to establish a first conrmctive 
step towards the inverse F -+ f, namely the following theorem which is proved in [l]. 

Theorem 2.1. 
(i) f is symmetric; 

(iii) f is non-decreasing on [O, CO); 
(ii) f(x) > f(0); 

For bounded potentials we are also able to prove the following theorem. 

Theorem 2.2. 
(i) f is symmetric; 
(ii) f(x) 2 f(0); 
(iii) f is non-decreasing on 10. CO); 



Proof oftheorem 2.2.  Firstly we suppose that the potential has area 2A. If we replace x 
by x / a  in Schrodinger's equation (1.1). define Y(x, U) = a-'D$(x/a, U), and divide by 
az. then we obtain 

1 (3 a2 
(2.4) 

1 
a 

- Yxz(x3 U)+ v u - f  Y(x, U) = -F( (ua)a )Y(x ,  U) U > 0. 

We now let a + 0, keeping the product ua constant at ua = 1. In this limit the 
potential if(;) approaches the Dirac delta -2A&(x) and consequently the eigenvalue 
&F[a) approaches -AZ, the bottom of the spectrum of the well known one-dimensional 
Schrodinger Hamiltonian -A - 2A6(x). 

Now we suppose that the limit on the right-hand side of (2.3) exists but that the potential- 
area integral diverges. We then construct a new potential fc which agrees with f for 1x1 < c 
and is otherwise zero. The point c is chosen so that, for example, f: I j c ( x ) l  dx = 4A. By 
the Rayleigh-Ritz (min-ma) characterization of the spectrum [12-14], we conclude that 

f(x) < f h )  =+ F ( u )  < Fc(u) * I F ( V ) l  IF&J)l. 

This in turn implies that the corresponding limit for F, on the right-hand side of (2.3) would 
yield a value A,' c A'. But A, = 2A. Hence, the potential-area integral must converge 

0 

The first part of this proof could perhaps be made more formal by the use of a lower 
bound provided by the theorem of Spruch 115, p 2001, and an upper bound provided by the 
(improper) trial function @ ( x )  = Nexp(-orlxl). 

For symmetric semi-monotone potentials which are bounded below we now try to extract 
from our knowledge of F some key features of the unknown potential shape f. We have 
to make assumptions about both j and F. For clarity our results are expressed in terms of 
the following theorem. 

Theorem 2.3. 

and be equal to A. 

(i) f is symmetric; 

(iii) f is non-decreasing on [0, CO); 
(iv) F ( u ) / u  --+ b as U + CO; 

(v) F ( u ) / u  + B as U --f 0; 
(vi) F(u) - Bu/u2 + -AZ as U + 0; 

(ii) f ( x )  > f(0); 

* 
(1) f(0) = b 

(2) f ( x )  4 B as x + w 

(3) Jm If(x)l dx = 2A. 
-m 
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It follows immediately from theorem 2.3 that we can define in terms of F and f a 
'normalized' trajectory function P and corresponding scaled potential f by 

( B  - b)u Bu 
B - b  B - b  

and 

where, from the claims of the theorem, we see that the normalized potential shape f has 
the properties: 

(2.7) 

Thus for any symmetric semi-monotone potential with a trajectory function F satisfying 
the three limits given as hypotheses in theorem 2.3, we may, without loss of generaliq, 
adopt the convenient normalized forms given by (2.5) and (2.6). 

Proof oftheorem 2.3. By adding puQ to both sides of equation (2.4) we arrive at the 
following general correspondence: 

auf (5) + pu H a-ZF(aua*) -t j3u (2.8) 

where a > 0, a > 0 and j3 are constants. If we choose the special case a = ( B  - b ) / A ,  
(Y = ( B  - b)-' and f l  = - B / ( B  - b) ,  then we obtain, on the left and right of (2.8) 
respectively, the normalized potential shapef and trajectov function 3. The hypotheses 
(iv)-(vi) then imply that P satisfies the 'normdid '  limits: 

(a) P(u)/u --f -1 as U + 00 

(b) P ( u ) / u  -+ 0 as U + 0 
(c) P(u)/u* + -1 as U + 0. 
We now apply theorems 2.1 and 2.2 to f and P and deduce J(0) = -1 

and 1: I f ( x ) l d x  = 2. The finiteness of the potential-area integral for f implies 
lims-,m f ( x )  = 0. These three results establish (2.7) and the definition (2.6) yields the 
three claims of the theorem. 0 

3. Comparison theorems 

The standard comparison theorem of quantum mechanics is an immediate consequence of the 
Rayleigh-Ritz (variational or min-max) characterization of the spectrum of the Schrodinger 
operator H = -A + uf (see for example [13, p 751 or [14, p 1521). The expression of this 
theorem in the present context is simply 

(3.1) f'l '  < f'Z' j F ( ' )  < F(Z), 

However, this result is not strong enough for our purposes. The right-hand side of (3.1) 
can be implied under weaker ordering conditions, which allow the graphs off")  and f" 
to cross over [IO]. For each normalized potential shape f we define a corresponding area 
function fi defined by 

f i  ( x )  = I' f(t) dt x 2 0. (3.2) 

With this definition, we restate from [lo] the following theorem. 
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Theorem 3.1. 
(i) f is symmetric; 
(ii) f ( x )  2 f(0); 
(iii) 
(iv) j i ' )  < f ) ;  

is non-decreasing on [0, 00); 

* F(') < F"?). (3.3) 

An immediate consequence of this theorem is that the square-well trajectory is extremal. 
I f f  is a normalized potential and fD is a normalized square well, then necessarily fp e f,. 
Thus for normalized potentials we always have the following theorem. 

Theorem 3.2. 

F' e F .  (3.4) 

As an example we consider the suspect trajectory 

It follows from theorem 2.3 that A = 1, B = 0 and b = -1  so that the corresponding 
potential f", if it exists, is normalized. However, as figure 1 illustrates, it turns out that 
F" c Fo. Hence F* cannot be a trajectory and f" does not exist. Since we are interested 
in *-1 tt ' IS ' 

normalized functions of U with plots in the shaded region in figure 1 are not in this range. 
obviously very important to know as much as possible about the range of A; 

0 

0 2 4 6 8 IO - s . 4 - 1 - 2 . 1  0 I 2  3 4 
I 

Figure 1. The 'forbidden' shaded region is bounded by 
the exhemd energy trajectory F o ( u )  of the normalized 
square-well potential The suspect trajectory F'(u) = 
-u2/(l + v )  'appears' to be the spectral image of 
a potential f ' ( x )  which has area two. vanishes 3s 
x -+ m, and satisfies f ' ( 0 )  = - 1 .  However. since 
F'(v) lies below Fo(o) no such potential f ' ( r )  exists 
F ( u )  is the known trajectory equation (1.2) for the 
normalired sech-squued potenrial. 

Figum 2. The sech-squared polential f and the ap- 
proximate inverse f (*) (the lowcr cume) reconsmmed 
fmm f by b e  Gaussian inversion formula (4.8). 
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4. Two approximate inversion formulae 

We now derive two approximate inversion formulae. Our derivations depend on the kinetic- 
potential formalism the elements of which we shall recall only very briefly here. In the 
abstract theory [12-141 of Schrodinger operators, the potential u f ( x )  in our problem would 
be regarded as a perturbation of the positive-definite Laplacian operator -A. The idea 
behind 'kinetic potentials' is an analytical realization of this abstract notion; it was first 
introduced in [9] and was extended to excited states in [ 161. For the bottom of the spectrum, 
which is the case that concerns us principally in this paper, one sets (-A) = s. Then the 
kinetic potential (minimum mean-iso-kinetic potential) f(s) is that function of s satisfying 
(f) = f(s). The advantage of this is that the kinetic potentials allow us to conveniently 
represent the way in which parametric dependences of the operator flow via the Rayleigh- 
Ritz (min-max) principle through to the corresponding spectrum: this is the main concern 
of what we call 'spectral geometry'. A very concise independent derivation of the elements 
of the theory may be found in [l]. 

We suppose that H = -A + uf is bounded below and is self-adjoint and throughout 
this section $b represents the exact normalized ground state for coupling U, as shown in 
(1.1). We have, therefore, 

F ( u )  = (@, H$b) = ($, -A$) + U(@., f+). (4.1) 

From this starting point we are able to prove [ I ]  that F'(u) is given by 

F' (u )  = (@, f$b) (4.2) 

and that F(u)  is concave. that is to say F"(u)  c 0. The definition of the kinetic potential 
f(s) associated with the potential shape f ( x )  is given by 

where D(H) is the domain of H. By considering finite-dimensional subspaces and scaling, 
to keep s constant, similar expressions can also be written for the excited states [16]. It 
follows [I] that kinetic potentials are monotone decreasing and convex; a kinetic potential 
and its corresponding energy trajectory are, in fact, related by a Legendre transformation 
[17]. More specifically, we have the following parametric relations in terms of the potential 
coupling U: 

Because of the convexity o f f  we can express the eigenvalue F ( u )  in the form 

F ( U )  =min[s + uJ(s)). (4.5) 
S>O 

This formula is fundamental to this section of the paper. The idea is that we perform min- 
max in two stages. For each value of (-A) = s we find the minimum mean-potential shape 
(f) = Fe), and then we recover the energy eigenvalue for each value of U by minimizing 
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over the kinetic energy s. The point of all this is that kinetic potentials are much easier to 
approximate than energy frajectories. 

We are now in a position to derive the first approximatian formula for the inverse of 
F. In view of the variational expression (4.3) we may use a ‘trial’ wavefunction @ ( x , s )  
satisfying 11@11 = 1 and II@xl12 = s and obtain 

fw < f&) = (@, f@). (4.6) 

With respect to each specific choice of @, (4.6) generates an approximate inversion formula. 
Thus the Gaussian choice 

leads to the general ‘Gaussian inversion’ formula: 

(4.7) 

where L is the usual Laplace transform. It is tempting to wish that sz would also preserve 
the ordering >; however, this desirable relation does not seem to follow immediately from 
the properties of the inverse Laplace transform [181. As an example we shall apply (4.8) 
to f for the ground state of  the sech-squared potential I l l ]  given by 

F ( u )  = -[(U + y ’ 2  - $2 
-2s (4.9) 

[SZ + s p  + s’ 1 f ( s )  = 
f ( x )  = - sech2(x) + 

We obtain 

Thus 

L-’ (&) = L-’ (-2 [m - &I) 
f i  

(4.10) 

(4.11) 

The approximate potential f ( A ’ ( x )  is a good approximation for small x .  However, the 
Gaussian wavefunction is not (simply) exponential for large x (as is the exact wavefunction). 
so as the approximate potential has a l /xz  tail it gives a wrong approximation; the actual 
ordering f(*’ < f is, however, what we would expect Plots of f ( x )  and f ( ” ( x )  are shown 
in figure 2. A variety of other inversion formulae may similarly be derived by choosing 
different shapes for the trial function @. We face the same sort of choice, of course, when 
we use vm’ational methods in the ‘forward’ direction f 

Our second approximate formula is based on the inversion of the ‘potential envelope 
method’ (91. Recently this method has been recast [I  I ]  into a form that allows us to consider 
the approximations for h - ’ ( F )  which we now derive. The idea in the forward direction 
is that a potential f of interest is represented as a smooth monotone transformation g of a 
soluble potential h ,  that is to say 

F. 

f ( x )  = g(k (x ) )  or f = g o  k .  (4.12) 
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Each tangent to g is a shifted h-potential of the form 01 + ph(x). Since h is solvable the 
Schriidinger spectrum is known for each tangential potential. The envelope approximation 
then consists of a reconstruction in the spectral picture of the envelope of the family of 
‘tangential trajectories’. If the transformation function g has definite convexity, then one 
also obtains energy bounds. In terms of kinetic potentials the envelope method has the 
following simple expression [9]: 

f=goh + f m g o i  (4.13) 

where * equals > if g is convex and % equals < if g is concave. As we have seen, F 
and f are transforms of each other. Thus, in ow inverse problem if we have reason to 
hope that the ‘envelope basis’ h provides a good representation for f in the sense that the 
transformation function g would not vary very strongly, then our search for f becomes a 
search for g, or an approximation for g. 

Since k is solvable, the corresponding kinetic potential 6 is known. The monotonicity of 
kinetic potentials allows us to solve for s in terms of i. This simple argument immediately 
yields an approximate solution to the inversion problem f -+ f .  We start with (4.13) 
and extract the following approximate formulae for the transformation function g and the 
potential f :  

g(A) = f o h  ‘-I =) f 4 f ( A ) = g ( A ) o h = f o t ? ’ o h .  (4.14) 

The approximate transformation function g(*) may or may not turn out to have definite 
convexity (f is given and the envelope basis I; is chosen). If h is monotone on x > 0 then 
the approximation f‘A’ is monotone and the correspondence f -+ f‘A) is invertible. In fact 
we have in this case 

f =  f ( A ) o h - i o h .  (4.15) 

However, without having stronger comparison theorems at our disposal we cannot extract 
any ordering relation between f(*) and f .  Let us suppose, for example, that h is semi- 
monotone and that g(A) is convex. Then we know by (4.13) that the trajectory F is a 
lower bound to the exact trajectory F(A) corresponding to the fictitious otential f(*’. It is 
therefore consistent to expect, in terms of definition (3.2). that fi < fi  . but the most we 
can say with certainty at the moment is fi # fi(A). 

(8. 
If as in [ 111 we define the K-function associated with a potential f by 

f ( s )  = f (1) =+ s = “ x )  = (f-’ 0 f ) ( x )  (4.16) 

then our envelope approximation formula becomes 

f ( x )  * f ‘ A ’ ( X )  = f ( K ‘ h ’ ( X ) ) .  (4.17) 

Instead of a trial function we must choose a trial envelope basis h. As an illustration 
we suppose that we are given the ground-state energy trajectory F ( u )  (1.2) for the sech- 
squared potential and we choose a harmonic-oscillator envelope basis h ( x )  = xz.  For the 
ground state of the harmonic oscillator we have from [ I11  K‘h)(x) = (4x2)-’. From the 
given trajectory F ( u )  we use (4.4) to obtain the kinetic potential f ( s )  as given in (4.9). 
Consequently, from (4.17). we obtain 

(4.18) 
2 

(1 + 4xz)Iz + 1’ 
- sech2(x) = f ( x )  m fA)(,t) = f - = - ( 4r2 )  

This particular approximation turns out to be good for small x ,  but the tail is Coulombic 
instead of exponential. A more appropriate envelope basis would yield better results. the 
harmonic oscillator is hardly ‘close’ to the sech-squared potential. 
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5. Inversion for separable potentials 

if we write the multiplicative potential u f ( x )  in Schrodinger's equation (1.1) in the form 
of the kernel of an integral operator, then we must adjoin a delta factor to obtain 

( X l V l X ' )  = uf(x)S(x - x') .  (5.1) 

Such integra! operators are therefore special. Another choice is the 'separable potentials' 
which have the distinct special form 

( X l V l X ' )  = - u f ( x ) f ' ( x ' ) .  (5.2) 

In this section we shall speak of the 'shape' f of a potential in the sense of (5.2); we 
shall also assume that f is real. positive, symmetric, monotone increasing for x > 0, and 
vanishing at infinity. In this case Schrodinger's equation (1.1) becomes 

- $ u ( x ,  U) + u f ( x )  f ( x ' l $ ( x ' ,  U)&' = F(u)$(x, U) U > 0 (5.3) s 
where the integral is over R. As we shall see, the inverse spectral problem F + f is 
soluble for such potentials. 

It is convenient to convert to 'momentum space' For the discussion of separable 
potentials. We denote the symmetrized Fourier transform by a tilde and use k for the 
momentum variable. for example 

f(k) = /(klx)f(x)dx = - ' / " e - i k X f ( x ) & .  

kzq(k, U) - uf(k) /" f(k')q(k', u)dk' = F(u)q(k,  U). 

(5.4) J Z  
In momentum space (5.3) becomes 

(5 .5)  

If we define c(u) and r ( u )  by the expressions 

c(u )  = / f(k')$(k', u)dk' and r2(u)  = IF(u)l (5.6) 

then the (unique) solution of the 'forward' problem is given by 

and 

(5.8) 

These potentials support one and only one eigenvalue for all U > 0. 
Equation (5.8) can be looked at in different ways. It gives a prescription for U-' = U 

in terms of r and therefore of energy F ;  since the right-hand side is monotone in r we can 
also solve uniquely for r (therefore energy) in terms of the reciprocal coupling U. Thus the 
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hypothesis of our inverse spectral problem could be expressed in the following way. We 
are given U as a function of r-and we have to solve (5.8) for more specifically, we have 
to invert the transformation f --f U given by 

(5.9) 

Widder [20, p 2251 shows that the inverse of the 'potential transform' 9 + U defined by 

(5.10) 

is given, at least formally, by the attractive expression 

Thus, by choosing 

(5.12) 

we see that separable potentials are invertible. 
We consider two examples: f(x) = S ( x )  and f ( x )  = e-1'1. In the case of the delta 

potential we have as our starting point the well known one-dimensional Coulomb-like energy 
trajectory F ( u )  = -u2/4. Hence u(r )  = (2r)-' and (5.9) becomes 

1 
2r 

(5.13) 

We can immediately invert this transform using the potential-transform pair [2Oj 

IW4, = lk - ' ,  r - ' )  

to find f ( k )  = l/&. That is to say, f ( x )  = 6 ( x )  and (x lV(x' )  = - u S ( x ) S ( x ' ) .  

'forward' problem (5.9) yields f ( k )  = .Jz7;?(1 + kz)-' and 
Similarly, in the exponential case f ( x )  = e-lxl a straightforward solution to the 

(5.14) 

Again, if in addition to the potential-transform pair mentioned above we also use the pairs 

(5.15) 

provided by Widder [20] and the linearity of the transform, we find from (5.14) that 
f ( k )  = ( 1  + kz)- ' ;  hence the potential shape f ( x )  = 

It is reasonable to expect that this analysis could be extended to potentials in the form 
of sums of products such as ( x l v l x ' )  = U Cy=, f i ( x ) f i ( x ' ) ,  and even further to Lz kernels. 
This might be an interesting area to explore. However, the class of potentials reached in 
this way does not include the 'usual' multiplicative potentials of quantum mechanics with 
operator kernels in the general form (S.1). 

{k ( l  + k 2 ) - ' , 2 k ( l  +k2)-*) u { ( 1  + r ) - ' , ( l + r ) - ' )  

is recovered. 
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6. Uniqueness 

We now turn to the question of uniqueness. If we consider, for example, the potential- 
trajectory pair { x 2 ,  U'/*] generated in the forward direction by the harmonic oscillator, the 
question arises as to whether the inverse U'/* -f x 2  is the only possibility (up to shifts). In 
the case of a fixed coupling it is known [21] that there is a large class of non-symmetric 
potentials, each element of which generates a Schrodinger spectrum identical to that of 
the harmonic oscillator: a nice discussion of this may be found in the book by de Lange 
and Raab 122, ch 31. In view of such interesting possibilities, uniqueness would at first 
sight seem to be an unlikely prospect. However, under the assumptions of symmetry 
and monotonicity, the harmonic oscillator is the unique potential with trajectory ul lzz and 
similarly we have uniqueness for the sech-squared potential. More generally, we are able 
to prove the following theorem. 

Theorem 6.1. 
(i) f is symmetric: 
(ii) f ( x )  > f ( 0 ) ;  
(iii) f is non-decreasing on [O, CO); 

=$ the potential shape f corresponding to the trajectory F is unique. 

Our proof of this theorem leans heavily on the monotonicity of the potential. We shall 
first establish some preliminary results. By theorem 2.1 F ( u ) / u  has the limit f(0) as U t 00. 

This limit is approached monotonically, since by (4.4) we have 

By (4.1) and (4.2) we know that 

and also that F'(u) decreases monotonically to f(0) because F"(u) < 0. Thus, for each 
U > 0 there exists a number a(u) z 0 such that f ( a )  = F'(u)  and f ( a )  z F'(u) ,  Vu > U. 
For symmetric semi-monotone potentials it is known that the ground-state probability 
becomes monotonically more concentrated in an interval about x = 0 as U --f 00. In 
fact if we define q(u) to be the probability in the interval [-a,a], that is to say 

q(v) = 1' @ ( x ,  u)dx (6.3) -" 
then for each a such that f ( a )  > f(0) and for all U sufficiently large we have proved [I] 
the conceniration lemma: 

If the potential has a constant 'patch' f ( x )  = f (0) lx l  c b at the centre, then in the limit of 
large U the probability is concentrated to this interval, not to a point. This particular effect 
is discussed in detail in [I]. We are now ready for the following proof. 
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Proof of theorem 6.1. We suppose that the two potentials f ( x )  and f ( x )  + y ( x )  both 
satisfy the hypotheses of the theorem. Then we have 

- @ L x ( ~ ,  U) + u ~ ( x ) @ ( x ,  U) = F(u)@(x, U) U > 0 (6.5) 

and 

- @AX, U) + ~ ( f ( x )  + Y ( ~ ) ) @ ( X .  U) = F ( u ) @ ( x ,  U) U > 0. (6.6) 

From (4.5) we have 

(e, f@) = ?e, = F ‘ ( 4  = (4, (f + V I @ )  (6.7) 

in which the two wavefunctions are assumed to satisfy 11@.11 = 11@11 = 1. If we apply 
each wavefunction as a trial function to ‘the other’ Hamiltonian, by the min-max definition 
(4.1 1) of f ( s )  we obtain the complementary inequalities 

(@> Y@) < 0 < (@? Y@). (6.8) 

By a sweeping process starting at the origin, we shall show that the inequalities (6.8) 
force y to be zero. Theorem 2.1 tells us that f ( 0 )  = lim,+m(F(u)/u) = f (0) + y(0). 
Hence, y(0 )  = 0. Since y is necessarily symmetric, we consider only x > 0. If y ( x )  has 
only one sign then the complementary inequalities immediately require that y = 0. Hence, 
we need only consider the case in which y ( x )  changes sign. Let us suppose that the first 
sign change occurs as x increases from zero occurs at x = a. Without loss of generality 
(because the argument is the same for either case), let us assume that y ( x )  is not zero on 
all of [0, a]  and that y ( x )  2 0 on [O, U ] .  We now choose U so large that F’(u) c f ( a ) ,  
which allows us to use the concentration lemma. Whilst keeping a constant, we increase U 
so that q is sufficiently close to q = 1 for both @ and @, so that the signs of both integrals 
in the complementary inequalities are positive. Since this cannot be if y # 0, we conclude 
that y = 0. Therefore, amongst the symmetric non-decreasing potentials, a given energy 

U 

The uniqueness problem is related to the notion of a complete set of densities 123-251. 
Suppose that for each U > 0, p ( x ,  U )  is a probability density on R, then this set of densities 
is said to be complete if 

trajectory F has the unique inverse f .  

m 
p ( x ,  u)p(x)dx = O  V u  > 0 p = 0 (a.e.). (6.9) L 

Naturally in quantum mechanics we choose p ( x ,  U) = I @ ( x ,  u ) l z ,  It is not difficult to find 
quantum-mechanical problems with ground-state wavefunctions that generate a complete 
set of densities in this way. For example, in the case of the harmonic oscillator f ( x )  = x z  
we have 

@ ( x )  = (u/x2)’’* exp(-u”zx2/2) (6.10) 

with a corresponding set I@’. U > 01 of densities that may be shown to be complete by the 
fundamental properties 1181 of the Laplace transform: it  is sufficient if the Laplace transform 
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of a function vanishes on any set of points forming an unending arithmetic sequence, to 
conclude that its pre-image is necessarily zero. 

We make the connection with our problem in the following way. We multiply (6.5) by 
@ and (6.6) by @. integrate over R, and subtract to obtain 

(+, r@) = 0 U > 0. (6.11) 

Since the two wavefunctions $I and @ are nodeless ground states, we can construct from 
them the probability density c@@, where c is a normalization constant. If the set of densities 
(cy?@, U > 0) is complete, then (6.11) provides another proof of theorem 6.1. Under what 
circumstances such a set of densities may be shown to be complete is an interesting open 
question. 

There is a possible connection, though much less immediate, with the Hohenberg-Kohn 
theory [2&28] which treats the question of the possible invertibility of the relationship 
between the potential in a many-body problem and the densities generated by the ground 
state; this problem has some interesting and complicated aspects [28]. However, in 
geometric spectral inversion we consider a one-particle problem and we have much more 
information at our disposal: the ground-state energy trajectory, and a continuous infinity of 
eigenvalues. 

One notable consequence of the inversion theorem is that all the power-law potentials 
are exactly invertible: once the power-law preimage is recognized from the correspondence 

I x I 4  = f ( x )  H F ( u )  = F(l)u"'2") (6.12) 

then uniqueness determines f ( x ) .  This is hue for any potential f with a trajectory F 
that happens to be known. Of course, potential normalization helps with the process of 
recognition. 

7. Conclusion 

In this paper we have established both abstract and constructive inversion results for 
symmetric monotonic potentials. For the bounded potentials with area. theorem 3.2 
establishes the inequality A(f)  = F > F', where F is the normalized trajectory for 
any such potential f which is not square. We have shown how to normalize a given 
trajectory so that f ( 0 )  = -1, f(m) = 0, and so that I f ( x ) l  has area two. We know [I ]  
that for this class of potentials F must be monotonically decreasing and concave. In the 
case of unbounded potentials, it is convenient to normalize a trajectory so that f (0) = 0; 
in this case the trajectory function F is necessarily monotonically increasing and concave. 
These results, along with the uniqueness theorem 6, I ,  are as far as we have been able to go 
towards a general characterization of A. If the constraints of monotonicity and symmetry 
are relaxed, it may be necessary to consider a generalized (many-valued) inverse A-', but 
we do not know whether this possibility is ever realized. 

We have exact inversion for power laws, square wells and, by uniqueness, for any 
potential f with a trajectory F that is recognized; and also generally for separable 
potentials. We have also obtained families of approximate reconstruction formulae by 
Gaussian inversion (4.8) and by envelope inversion (4.17). These inverse approximations 
lack the ordering that their counterparts in the forward direction have: this most desirable 
feature awaits further refinements other than theorem 3.1 to the 'usual' comparison theorem 
of quantum mechanics. 



Geometric spectral inversion 1785 

Geometric spectral inversion may seem surprising at first sight since knowledge of only 
the ground state for all values of the coupling U leads to the potential shape f from which, 
in turn, the details of all the states can be found. This result may perhaps appear to he 
less paradoxical in the light of the following, partly heuristic, remarks. For symmetric 
potentials, the set of all the (generalized) energy eigenstates corresponding to the set of 
energies necessary for inversion is a spanning set for the Hilbert (sub) space of symmetric 
functions. It may be possible to prove, as we have suggested in section 6,  that the set of 
densities I@’, U 0) derived from all the ground-state wavefunctions is complete: this 
leads again to such a spanning set for the symmetric part of Hilbert space. An illustration 
of this completeness idea may be found in the beautiful exposition of the theory of the 
Laplace transform by Doetsch [ 181: the set of nodeless exponential functions 

spans the symmetric part of the Hilbert space L*@); for this spanning purpose any positive 
unending arithmetic sequence {rn]g, will suffice. Much of the current theory [23-251 
of complete sets of densities seems to be a generalization, by change of variable, of this 
fundamental completeness result. It may therefore prove fruitful to explore in detail the 
connection between the theory of Schradinger operators and complete sets of densities 
since the theory of the latter is at present dominated by results obtained for the ‘exponential 
classes’; however, these densities are much too restrictive for the interesting problems raised 
by quantum mechanics. 

The approximate inversion by potential envelopes is not reskicted to the ground-state 
data. Since the ground-state trajectory alone is already sufficient, the set of all energy 
trajectories would represent more than enough spectral information for inversion. Indeed, 
for a single fixed coupling w (and a symmetric potential) the set of all energy eigenvalues 
is known 161 to he sufficient for the reconstruction of the potential uf ( x ) .  If there is only 
a selection of data available from some of the trajectories, then it is clear in principle that 
all of these data can be employed to sharpen our picture of the potential shape f .  In the 
context of an approximation. the consistency question which arises because of overlapping 
constraints could be used to improve the approximate inversion. If we imagine a diagram 
with plots of the energy (and resonance) trajectories as functions of coupling U, then it 
is natural to ask the general question: how much of this bound-state data is sufficient to 
reconstruct the potential? More particularly, could one reconstruct the potential knowing 
only the energy trajectory Fn(u) for one of the excited states n > 0, even though such 
a trajectory might exist only for a sufficiently large coupling U? One possible way of 
exploring this idea approximately is by using the concise envelope inversion (4.17) which 
is not restricted to the ground state. 
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